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Preface

Inverse problems are concerned with determining causes by knowledge of con-
sequences. They lie at the heart of scientific inquiry and technological development
and remain a central topic to mathematical sciences. The mathematical research of
inverse problems has its own philosophy and methodologies. This book is devoted
to a frontier topic on the inverse problems for integro-differential operators, a.k.a.
nonlocal operators. Due to its theoretical particularity and practical significance,
the corresponding study has received considerable attention and growing interest
in the inverse problems community. Hence, it is a timely moment for a research
monograph devoted to this intriguing and important field of mathematical research.

It is known the nonlocality may occur in time or space or both. This book is
mainly concerned with the nonlocality in space. It covers the fundamental aspects
of both the forward and inverse problems associated with integro-differential op-
erators. For the forward problems, we introduce several useful properties, such as
the well-posedness, maximum principles and unique continuation property. For the
inverse problems, we cover the modelling, unique identifiability and stability issues
as well as reconstruction methods for a variety of nonlocal inverse problems and
connect them to physical applications. There are some pioneering contributions as
well as growing results in the literature in this field.

On the one hand, we summarize and review the pioneering developments in a
systematic and comprehensive manner. On the other hand, we present overviews
on some new developments, especially those by the two authors as well as their
coauthors. This field is still being under fast development. It is replenished with
challenging problems, and moreover new applications keep giving rise to new non-
local inverse problems. It is our aim to introduce a frontier field of research as
well as to inspire further developments with novel perspectives and new insights.
This book can serve as a textbook for graduate students or beginning researchers
who are interested in this active field of research, and it can also serve as a handy
reference for active researchers.
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